New rapid, accurate T2 quantification detects pathology in normal-appearing brain regions of relapsing-remitting MS patients

نویسندگان

  • Timothy M. Shepherd
  • Ivan I. Kirov
  • Erik Charlson
  • Mary Bruno
  • James Babb
  • Daniel K. Sodickson
  • Noam Ben-Eliezer
چکیده

INTRODUCTION Quantitative T2 mapping may provide an objective biomarker for occult nervous tissue pathology in relapsing-remitting multiple sclerosis (RRMS). We applied a novel echo modulation curve (EMC) algorithm to identify T2 changes in normal-appearing brain regions of subjects with RRMS (N = 27) compared to age-matched controls (N = 38). METHODS The EMC algorithm uses Bloch simulations to model T2 decay curves in multi-spin-echo MRI sequences, independent of scanner, and scan-settings. T2 values were extracted from normal-appearing white and gray matter brain regions using both expert manual regions-of-interest and user-independent FreeSurfer segmentation. RESULTS Compared to conventional exponential T2 modeling, EMC fitting provided more accurate estimations of T2 with less variance across scans, MRI systems, and healthy individuals. Thalamic T2 was increased 8.5% in RRMS subjects (p < 0.001) and could be used to discriminate RRMS from healthy controls well (AUC = 0.913). Manual segmentation detected both statistically significant increases (corpus callosum & temporal stem) and decreases (posterior limb internal capsule) in T2 associated with RRMS diagnosis (all p < 0.05). In healthy controls, we also observed statistically significant T2 differences for different white and gray matter structures. CONCLUSIONS The EMC algorithm precisely characterizes T2 values, and is able to detect subtle T2 changes in normal-appearing brain regions of RRMS patients. These presumably capture both axon and myelin changes from inflammation and neurodegeneration. Further, T2 variations between different brain regions of healthy controls may correlate with distinct nervous tissue environments that differ from one another at a mesoscopic length-scale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progressive gray matter damage in patients with relapsing-remitting multiple sclerosis: a longitudinal diffusion tensor magnetic resonance imaging study.

BACKGROUND Diffusion tensor magnetic resonance imaging (DT MRI) has the potential to provide in vivo information about tissue microstructure. In multiple sclerosis (MS), DT MRI has disclosed the presence of occult structural damage in the normal-appearing brain tissues. OBJECTIVE To investigate whether DT MRI is sensitive to longitudinal changes of brain damage that may occur beyond the resol...

متن کامل

The Assessment of Structural Changes in MS Plaques and Normal Appearing White Matter Using Quantitative Magnetization Transfer Imaging (MTI)

Introduction: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS), affecting mostly young people at a mean age of 30 years. Magnetic resonance imaging (MRI) is one of the most specific and sensitive methods in diagnosing and detecting the evolution of multiple sclerosis disease. But it does not have the ability to differentiate between distinct histopathologic...

متن کامل

Determinants of disability in multiple sclerosis at various disease stages: a multiparametric magnetic resonance study.

OBJECTIVE To investigate whether diffusion-tensor magnetic resonance imaging and whole brain N-acetylaspartate (WBNAA) proton magnetic resonance spectroscopy can provide complementary pieces of information to achieve a better understanding of the factors associated with disability in multiple sclerosis (MS). DESIGN Cross-sectional survey. SETTING Referral hospital-based MS center. PATIENT...

متن کامل

A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...

متن کامل

Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter.

PURPOSE To prospectively determine hemodynamic changes in the normal-appearing white matter (NAWM) of patients with relapsing-remitting multiple sclerosis (RR-MS) by using dynamic susceptibility contrast material-enhanced perfusion magnetic resonance (MR) imaging. MATERIALS AND METHODS Conventional MR imaging (which included acquisition of pre- and postcontrast transverse T1-weighted, fluid-a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017